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Abstract: During the past few decades, remote sensing has been established as an innovative, effective
and cost-efficient option for the provision of high-quality information concerning infrastructure to
governments or decision makers in order to update their plans and/or take actions towards the
mitigation of the infrastructure risk. Meanwhile, climate change has emerged as a serious global
challenge and hence there is an urgent need to develop reliable and cost-efficient infrastructure
monitoring solutions. In this framework, the current study conducts a comprehensive review
concerning the use of different remote-sensing sensors for the monitoring of multiple types of
infrastructure including roads and railways, dams, bridges, archaeological sites and buildings.
The aim of this contribution is to identify the best practices and processing methodologies for the
comprehensive monitoring of critical national infrastructure falling under the research project named
“PROION”. In light of this, the review summarizes the wide variety of approaches that have been
utilized for the monitoring of infrastructure and are based on the collection of remote-sensing data,
acquired using the global navigation satellite system (GNSS), synthetic aperture radar (SAR), light
detection and ranging (LiDAR) and unmanned aerial vehicles (UAV) sensors. Moreover, great
emphasis is given to the contribution of the state-of-the-art soft computing methods throughout
infrastructure monitoring aiming to increase the automation of the procedure. The statistical analysis
of the reviewing publications revealed that SARs and LiDARs are the prevalent remote-sensing
sensors used in infrastructure monitoring concepts, while regarding the type of infrastructure,
research is orientated onto transportation networks (road and railway) and bridges. Added to
this, deep learning-, fuzzy logic- and expert-based approaches have gained ground in the field of
infrastructure monitoring over the past few years.

Keywords: infrastructure; monitoring; remote sensing; UAV; SAR; LiDAR; GNSS; soft computing

1. Introduction

The main objective of the current work is to provide valuable insights into the state-
of-the-art infrastructure monitoring approaches. The acquired knowledge will be used
for the comprehensive monitoring of critical infrastructure, falling under the “PROION”
project. In this framework, the “Introduction” section is divided into three subsections,
“1.1 General overview”, “1.2 Related works” and “1.3 PROION project and scope of the
review”. Specifically, Section 1.1 underlines the need to develop effective infrastructure-
monitoring methodologies and points out the integration of remote sensing over the years
into such concepts. A brief description of previous review works is presented in Section 1.2,
while Section 1.3 provides details concerning the “PROION” project and the aim of the
current research. More information about advanced features or improvements of remote-
sensing technologies or soft computing methods is listed in the respective chapters of
sections “2. Infrastructure monitoring using remote-sensing data and techniques” and
“3. Contribution of soft computing in infrastructure monitoring”.

Geomatics 2023, 3, 367–392. https://doi.org/10.3390/geomatics3030021 https://www.mdpi.com/journal/geomatics

https://doi.org/10.3390/geomatics3030021
https://doi.org/10.3390/geomatics3030021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/geomatics
https://www.mdpi.com
https://orcid.org/0000-0003-4040-9444
https://orcid.org/0000-0003-1028-9541
https://doi.org/10.3390/geomatics3030021
https://www.mdpi.com/journal/geomatics
https://www.mdpi.com/article/10.3390/geomatics3030021?type=check_update&version=2


Geomatics 2023, 3 368

1.1. General Overview

The need for the development of reliable cost-effective systems for monitoring engi-
neering infrastructure is increasing, especially considering the effects of ageing and the
impact of natural hazards. Despite these typical threats, infrastructure is additionally
affected by a growing risk which is associated with the rising temperatures and frequent
weather extremes (droughts, floods, etc.) [1–4]. Currently, more than 40% of the world’s
population lives in areas that are exceptionally vulnerable to climate change hazards and
infrastructure risks [5]. Therefore, the scientific community should provide reliable, cost-
effective and globally applied infrastructure-monitoring solutions to decision makers and
stakeholders in order to ensure resilience and mitigate risk.

The first documented attempt to utilize remote-sensing technology for infrastructure
damage assessment was traced in 1906 after a devastating earthquake that shook the city
of San Francisco [6]. Since then, the remarkable advances in sensor and communication
technologies have created opportunities to obtain observable data at an unexpected rate
and quantity.

A rapid increase in publications, associated with remote-sensing data for infrastructure
monitoring, has been noticed in the last decade (2012–2022). This rising trend of utilizing
remote-sensing data, obtained by GNSS, SAR, LiDAR and UAV sensors is displayed in
Figure 1. Moreover, it is evident that after 2016, UAV and SAR sensors have recorded the
dominant remote-sensing data used in infrastructure investigations, which is probably
related to the fact that both are affordable and easy to apply. The search was based on the
keywords on the Scopus database, which appear in the legend of the diagram, and just the
first four months of 2022 were considered.
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Figure 1. Publications per year associated with remote-sensing data for infrastructure monitoring.
The keywords of the search on Scopus database are displayed in the legend of the diagram. The first
four months of 2022 were considered.

Although nearly every type of spaceborne or airborne imagery has already been
utilized to detect damages to infrastructure for more than a century [7,8], it remains an
active topic of research.

1.2. Related Works

In the light of developing novel methods and approaches towards a more efficient and
detailed monitoring of infrastructure, several studies have been conducted up till now. In
this framework, multiple review papers have already been published concerning the state-
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of-the-art remote-sensing approaches for the monitoring of various types of infrastructure
(Table 1).

Specifically, GNSS data, as well as advanced differential interferometric techniques,
have been widely used for the monitoring and analysis of ground deformation in dams
during the last decades, providing reliable measurements of the surface horizontal and/or
vertical displacements either at specific location or in the entire infrastructure [9]. As GNSS
technology has evolved, new GNSS-based dynamic monitoring approaches have been
developed. These approaches, consisting of real-time kinematics (RTK), instantaneous dis-
placement measurements and precise point positioning (PPP), have been described in detail
and applied in numerous cases for the monitoring of the structural health in the distinct
components of bridges [10]. Moreover, various researchers, working in bridge engineering,
have utilized TLS sensors to create a 3D structural model, evaluate the structural quality
and model the bridge behavior during the different phases of construction, operation,
and maintenance [11]. Laser scanning technology has also contributed to the effective
monitoring of road and rail infrastructure, while the integration of artificial intelligence
methods has improved the automation of the procedure [12]. The design and execution
of terrestrial laser scanning surveys for infrastructure monitoring purposes, as well as the
proper handling of processing issues during the steps of registration and georeferencing,
have been analyzed in several studies [13]. In recent years, the utilization of UAVs in
infrastructure monitoring has gained significant momentum, mainly due to the ability to
access remote and inaccessible areas and the cost/time efficiency. Therefore, there are more
than a hundred published studies in which the monitoring and assessment of the structural
conditions of infrastructure are based on the collection of UAV data [14,15]. These studies
provided useful information on the appropriate collection and processing of UAV imagery
and the various factors that affect the execution of UAV flights, as well as the strengths and
limitations of UAV performance in infrastructure monitoring. In the field of transportation,
UAVs have been utilized in a variety of applications including road safety and highway
infrastructure management [16].

The rapid advances in soft computing have been a step forward in the direction of
infrastructure monitoring. Specifically, the more sophisticated infrastructure monitoring
approaches are based on the exploitation of UAV imagery along with machine learning
algorithms to generate strategies and processing pipelines for structural building damage
mapping and assessment [17]. In this framework, deep-learning applications are growing
exponentially in the field of structural health monitoring, including structural recognition,
change detection, crack detection, damage identification, damage quantification, etc. [18,19].

Table 1. Previous review studies concerning the application of remote-sensing sensors and soft
computing methods in infrastructure monitoring.

Reference Year Scope Data/Method Number of Papers
Reviewed Covered Period

[13] 2017 change detection and deformation
monitoring of structures LiDAR 95 1992–2017

[9] 2018 dam deformation monitoring GNSS, SAR 154 1977–2018

[17] 2019 automated structural
damage detection

UAV, soft
computing 97 2004–2019

[10] 2019 structural health monitoring GNSS 170 1995–2019

[12] 2019 transportation monitoring (road
and railway) LiDAR 173 1998–2019

[14] 2019 structural health monitoring UAV 141 1996–2019
[19] 2019 structural health monitoring Deep learning 170 1992–2019

[18] 2020 structural health monitoring and
damage detection

UAV, Deep
learning 235 1997–2020
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Table 1. Cont.

Reference Year Scope Data/Method Number of Papers
Reviewed Covered Period

[16] 2020 road safety and highway
infrastructure management. UAV 103 2000–2020

[11] 2020 bridge structural assessment
and management LiDAR 222 2000–2020

[15] 2021 bridge condition assessment UAV 96 2015–2021

1.3. PROION Project and Scope of the Review

The main objective of the study is to carry out a brief literature review on innovative
infrastructure monitoring methodologies in order to identify the best practices and pro-
cessing methodologies for the comprehensive monitoring of critical national infrastructure
falling under the research project named “PROION”.

The purpose of the project is to develop a platform for the continuous monitoring of
high priority infrastructure located in an extremely active area in terms of tectonics and
seismicity. Monitoring is based on the combination of instrumental and remote-sensing
measurements along with fuzzy logic networks methods and machine learning algorithms
(Figure 2). In more detail, measurements obtained by three-axis accelerometers, GNSS
receivers and persistent scatterer interferometry will be imported into the platform, in
which they will be validated using high-precision reference representations derived from
TLS surveys and UAV campaigns. Afterwards, soft computing methods will contribute
to decision-making. The detection, quantification, and localization of damage to civil
infrastructure using the proposed framework can directly be used in the prognosis of
the structure’s ability to withstand service loads and/or their future satisfactory and safe
operation. “PROION” project is financially supported by the European Union and the
Hellenic government. The overall architecture of the “PROION” project is depicted in
Figure 2. It should be noted that the European Commission (EC) has funded corresponding
initiatives to support the research and development of new decision-making systems and
tools. The projects tCat, AutoScan and NeTIRail-INFRA are some indicative EC-funded
projects for the evaluation and monitoring of transportation infrastructure [20–22].

In this context, the current study conducts a comprehensive review on the state-of-
the-art remote-sensing approaches and soft computing methods for the monitoring of
multiple types of infrastructure, i.e., roads and railways, dams, bridges, archeological sites,
and buildings. More than a hundred research publications were collected and analyzed,
covering all the recent infrastructure-monitoring applications which were implemented
over the last decade (2012–2022). Remote-sensing data were obtained by GNSS, SAR,
LiDAR and UAV sensors, while the analysis of soft computing methods revolved around
the following terms: statistical analysis and machine learning, deep learning and neural
networks, fuzzy logic and fuzzy inference system.

The combined use of various remote-sensing sensors overcomes the limitations of
individually using each technique. In particular, permanent GNSS stations provide very
accurate and continuous measurements; however, the method lacks spatial coverage. This
shortcoming can be addressed through the use of SAR approaches. SAR measurements
have the advantage of large coverage, but the analysis is performed on a limited temporal
resolution. For instance, Sentinel-1 mission has a 12-day revisit time. On the contrary, UAVs
and LIDAR can provide robust and dense 3D information on a user-based repeatability.
Hence, the synergy of the above-mentioned techniques as described in the PROION project
constitutes an ideal monitoring approach that minimizes the limitations of the individual
remote-sensing methods and integrates the benefits.
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In the following section, the remote-sensing methodologies, based on the utilization
of GNSS, SAR, LiDAR and UAV sensors for infrastructure monitoring are described, while
in Section 3 the state-of-art soft computing algorithms are analyzed in detail. An in-depth
discussion, accompanied by a quantitative analysis of the reviewing papers as well as future
insights are presented in Section 4. Finally, the main points of the review are summarized
in Section 5.

2. Infrastructure Monitoring Using Remote-Sensing Data and Techniques
2.1. GNSS

The Global Positioning System (GPS) constitutes the first satellite-positioning system,
which was developed by the US Department of Defense in 1973. In 1993, the system became
operational, while in 2000, GPS’s data was fully publicly available. Since then, other satellite
positioning systems have been launched, such as GLONASS, BEIDOU, GALILEO, etc. The
term GNSS encompasses all measurements of these compatible systems, providing to users
dense time-series of precise positions for long intervals.

The first attempts to monitor infrastructure using GNSS are traced back to 1988 and
1995, through the collection of high-precision geodetic measurements over dams [23,24].
The approaches provided continuous measurements of displacement over time, contribut-
ing to the analysis of the dam deformation with accuracy of approximately 0.5 cm. After
these first successful attempts, several researchers dealt with GNSS-based dam monitor-
ing and various processing methodologies were developed towards the automation of
the monitoring procedure and the improvement of the achieved accuracy at millimeter-
scale [9,25–28]. In particular, a continuous GNSS monitoring system was proposed for the
monitoring of dam deformation and the subsequent investigation of the role of the water
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level within the reservoir. The system was based on the creation of a permanent GNSS
network, which contributed to an excellent performance (millimetric-scale) monitoring of
the different parts of the dam in order to obtain useful information for dam deformation
that cannot be retrieved through conventional GNSS methods [29]. In a retrospective
study, dam horizontal displacements were determined using terrestrial measurements and
GNSS-based techniques, taking into account 25 reference stations that were established
outside of the dam’s deformation zone [30]. On the other hand, real-time kinematic (RTK)
GNSS sensors have also been utilized for high-precision deformation monitoring [26,31,32].
In other studies, displacements, resulting from GNSS processing, were analyzed and com-
pared with pendulum data with sub-millimeter standard deviation, however the integrated
data should be in the same reference system [33]. A typical dam-monitoring survey using
GNSS receiver is displayed in Figure 3.
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Moreover, GNSS sensors are widely used in the monitoring and maintenance of
bridges. In fact, the first bridge-monitoring campaign was performed in 1996, with remark-
able results, through the installation of 1 Hz GPS RTK receivers onto the Humber Bridge
parapet, while various surveys on other bridges were subsequently conducted, utilizing
either carrier phase/pseudorange GPS receivers or GNSS receivers [34–36]. However, RTK
technique is still facing many shortcomings such as the non-guaranteed quality of base
station observation, the correct placement of the reference station in a stable location, etc.
These shortcomings can be overcome by utilizing RTK network technology, which is a
real-time, high-precision positioning approach, based on carrier phase. Network-based
RTK uses a regional, more reliable network error correction model, derived from the pro-
cessing of data from continuous operation reference stations. In this way, dynamic bridge
displacements are provided with adequate efficiency and lower operating costs [37,38].
Another, GNSS-based monitoring technology is precise point position (PPP), which per-
forms accurate positioning using a single receiver and without the need of a reference
station [39]. PPP was focused on the estimation of fixed position; however, it has been a
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research hotspot in recent years with several published studies concerning displacement
monitoring [40,41].

At the same time, other researchers examined the exploitation of a fully low-cost
monitoring system, both in terms of hardware and software. Thus, several combinations
of GNSS receivers and antennas as well as various sets of processing parameters were
evaluated, while data processing was executed in open source and commercial software,
taking into account different experimental bridge monitoring scenarios [42–45]. More-
over, many studies have focused on eliminating GPS measurement errors through the
application of common non-linear methods during GPS positioning adjustment such as
nonlinear adaptive-recursive least square, extended Kalman filter or wavelet principal
component analysis [45,46]. The wavelet principal component method proved to be the
most satisfactory solution for the improvement of the quality of high-frequency GPS time
series observations [46].

As the automation of the infrastructure-monitoring procedure evolves and the need
to record and predict any potential deformation grows, soft computing algorithms and
soft computing techniques are constantly gaining momentum. Therefore, artificial neu-
ral networks and adaptive neuro-fuzzy inference systems have been successfully used
as further processing steps in GNSS observations for displacement prediction and risk
assessment [47,48].

Finally, it is worth mentioning that an integrated methodology, consisting of GNSS
measurements and other types of remote-sensing data, has been proposed and sufficiently
implemented for evaluation of the deformation on buildings, located in the Italian pre-
Alps [49].

2.2. SAR

Infrastructure monitoring using SAR imagery constitutes a common practice that goes
beyond the growing monitoring requirements (large-scale monitoring, regular deformation
measurements, cost efficiency, etc.). In this context, SAR data and interferometric techniques
are able to estimate the deformation of multiple parts of a given infrastructure with sub-
centimeter accuracy.

In more detail, conventional dam-monitoring methodologies are time consuming,
usually expensive, and high-demanding. On the other hand, SAR Interferometry (InSAR)
is able to provide accurate and dense deformation measurements even in slow-moving
areas. The first dam deformation studies were based on the utilization of ERS-1/2 and
ENVISAT imagery. In particular, almost two hundred interferograms were generated
from the processing of the aforementioned data through the Small BAseline Subset (SBAS)
InSAR technique, aiming at analyzing the deformation behavior of the Genzano di Lu-
cania Dam in Italy [50]. In retrospective studies, long-term time series of ERS-1/2 and
ENVISAT data were supplemented by imagery obtained by either TerraSAR-X or Sentinel-1
mission in order to analyze and understand the deformation process and dam’s behavior
mechanisms [51,52]. In fact, the launch of the Sentinel-1 mission breathed new life into
dam-deformation monitoring by providing denser time-series of freely available observa-
tions. Therefore, a rapid growth in publications concerning the monitoring of dam stability
and dam maintenance using Sentinel-1 imagery has been observed in recent years [53–56].
InSAR deformation measurements derived from Sentinel-1 data have proven to be con-
sistent with the in-situ measurements with RMSE at about 2 mm/year [57]. In addition,
high-resolution SAR data (COSMO-SkyMed, TerraSAR-X/TanDEM-X) have been effec-
tively utilized for dam monitoring, aiming at achieving better results due to the higher
resolution of the missions [58,59]. SAR imagery, processing techniques and software that
were utilized in the aforementioned studies are displayed in Table 2.

Moreover, large-scale surface deformation measurements derived using radar data and
interferometric techniques—especially persistent scatterer interferometry (PSI)—have been
widely used for the detection of damage to bridges in order to mitigate the risk and plan
properly their future maintenance. Specifically, 61 COSMO-SkyMed images were submitted
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to PSI processing to identify damage in a bridge from 2011 to 2017, and damage causes were
then analyzed [60]. Corresponding high-resolution radar data, obtained by X-band missions
(COSMO-SkyMed, TerraSAR-X) have been utilized either solely or in combination with
C-band radar images for the assessment of the stability and consequent structural health of
bridges [61–63]. Recently, bridge-monitoring studies have been based on the acquisition of
Sentinel-1 data due to their short revisit time, which allows the provision of almost real-time
deformation measurements (vertical and horizontal) along the construction [64,65]. In this
framework, the high-temporal resolution Sentinel-1 imagery is combined with archived
ERS/ENVISAT data and high-spatial resolution COSMO-SkyMed images for the long-term
monitoring (more than twenty years) of the displacement patterns and the investigation
of viaduct stability [66]. Despite the differences in the spatial resolution of the datasets,
the evaluation and analysis of the derived displacements demonstrated a spatio-temporal
consistency of the patterns, which was compared with in-situ measurements. Additionally,
other researchers have tried to improve the accuracy of the results of the interferometric
procedure by applying various approaches such as: (a) the use of the long–short baseline
iteration method along with the LLL lattice reduction algorithm for the reduction of
ambiguities during phase unwrapping [67], or (b) the utilization of seasonal variation
models for the post-analysis of PSI displacements [68]. Some indicative bridge-monitoring
studies, based on SAR imagery and interferometric techniques, are presented in Table 3. At
the same time, pioneering works has been carried out on how to tackle thermal dilation
phenomena in order to derive higher-quality deformation velocity maps. In this context,
high-resolution SAR data, obtained by X-band sensors have been exploited to isolate
the thermal expansion parameter occurred over viaduct from the observed deformation
pattern [69,70]. While similar approaches have been adopted for the analysis of the static
structure of bridges and the estimation of high-precision topography [71,72].

Table 2. SAR data, processing technique and software, applied in dam deformation monitoring.

Reference SAR Data Processing Technique Software

[52] ERS-1/2, Envisat,
Sentinel-1 MT-InSAR StaMPS, SARPROZ,

ISCE-SALSIT
[53] Sentinel-1 PSI, SBAS GAMMA, StaMPS
[58] COSMO-SkyMed PSI SARPROZ
[57] Sentinel-1 PSI -
[59] TerraSAR-X, TanDEM-X PSI -
[50] ERS-1/2, ENVISAT SBAS -
[54] Sentinel-1 PSI SARPROZ
[55] Sentinel-1 MT-InSAR SARPROZ
[56] Sentinel-1 PSI SARPROZ

[51] ERS-1/2, Envisat,
TerraSAR-X Coherent Pixel PSI -

Ensuring the safety of large-scale transportation infrastructure, such as road network
and railways, constitutes a critical issue for the public and an important area of research
for many scientists. In particular, high-resolution SAR data, acquired by TerraSAR-X or
COSMOS-skymed mission have effectively applied in the analysis of the long-term defor-
mation of large-scale linear infrastructure, consisting of highways and railways [73–77].
Furthermore, a method for the quantification and characterization of the seasonal surface
deformation of highways was proposed [78]. The method was based on the estimation of
the surface deformation and the subsequently calculation of seasonal indices (i.e., defor-
mation concentration degree, deformation concentration period). In other studies, surface
deformation of transportation infrastructure, derived by C-band SAR data, was correlated
with the local soil characteristics and geological setting in order to obtain a more compre-
hensive understanding of the risk [79–81]. Moreover, it has been demonstrated that the
synergistic use of PSI and LiDAR measurements contributes to the optimization of the
deformation monitoring procedure as well as the improvement of the quality of the 3D
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geolocation of the permanent scatterers [72–84]. Recently, more sophisticated transporta-
tion infrastructure monitoring approaches have been developed to: (a) fully automate the
detection of displacements and/or potential warnings over large-scale transport networks
and (b) create effective decision-making tools [85,86]. These approaches combined interfer-
ometric deformation measurements with GIS method and/or machine learning algorithms
(i.e., regression tree, support vector machine, boosted regression trees, random forest). An
overview of SAR data, processing techniques and software, which are utilized in some
indicative transportation infrastructure monitoring studies, is presented in Table 4.

Table 3. SAR data, processing technique and software, applied in bridge deformation monitoring.

Reference SAR Data Processing
Technique Software

[60] COSMO-SkyMed images PSI -

[64] Sentinel-1 PSI
SNAP, Python
(snap2stamps),

StaMPS

[66] ERS1/2, ENVISAT,
COSMO-SkyMed PSI SARscape (v 5.2)

[65] Sentinel-1 PSI -
[61] TerraSAR-X PSI -

[62] COSMO-SkyMed,
Sentinel-1 MT-InSAR SARPROZ

[68] Sentinel-1 PSI GAMMA, StaMPS

[63] COSMO-SkyMed,
Sentinel-1 PSI GAMMA

[67] Cosmo-SkyMed PSI GAMMA

Table 4. SAR data, processing technique and software, applied in transportation infrastructure
deformation monitoring.

Reference SAR Data Processing
Technique Software

[84] RadarSAT-2 MT-InSAR -

[85] ERS1/2, ENVISAT,
COSMO-SkyMed PSI SARscape

[81] ENVISAT, ERS-1/2,
Sentinel-1 SBAS GAMMA

[73] TerraSAR-X SBAS -

[77] Sentinel 1,
COSMO-SkyMed PSI SARscape

[74] TerraSAR-X MT-InSAR SARPROZ
[78] TerraSAR-X PSI SARPROZ
[79] Sentinel-1 PSI SARscape (v5.3.)
[83] Sentinel-1 DInSAR, PSI SNAP, SARPROZ
[82] Sentinel-1 PSI -

[80] Sentinel-1,
Cosmo-SkyMed PSI, SBAS SNAP(v.3), StaMPS

[86] Sentinel-1 PSI -
[75] TerraSAR-X TS-InSAR StaMPS
[76] TerraSAR-X PSI -

It is worth mentioning that SAR imagery and interferometric techniques have also
been used for the monitoring of the deformation of buildings [87,88]. In this context, vari-
ous processing methodologies were examined, including stable point network approach,
interferometric point target analysis, hierarchical clustering methods [89–91].
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2.3. LiDAR

The latest advances in sensor technology and data-processing capabilities have high-
lighted LiDAR as a promising technique for high-precision three-dimensional mapping
with a wide range of applications. The use of LiDAR technology for infrastructure manage-
ment and maintenance purposes has grown significantly over the last decade, due to the
ability to collect dense 3D representations of the investigated objective, at high speed and
low cost. Thus, several studies have already been published, dealing with the exploitation
of LiDAR data for infrastructure applications [11–13].

In particular, terrestrial laser scanning (TLS) data have been effectively utilized to
create 3D bridge reconstruction models [92,93]. In fact, methodologies have been proposed
concerning the evaluation of the generated point clouds in terms of quality and geometric
accuracy in order to produce higher quality 3D bridge models [93]. In retrospective studies,
TLS imagery were used along with other multi-source data (i.e., data obtained by mobile
mapping systems, photogrammetric data) or semi-automated algorithm-based approaches
to create detailed informative models of the efficient building information modeling (BIM)
and structural health monitoring (SHM) [94,95]. Furthermore, the specific type of remote-
sensing data has proven its high potential in the detection and evaluation of cracks in
concrete bridges [60,96]. On the other hand, other researchers have attempted to measure
the vertical seasonal displacements of steel bridges using TLS data and a strictly defined
processing methodology [97]. In more detail, the approach is based on the differentiation
of high-resolution TLS point clouds as well as the high-pression georeferencing of a de-
fined control network. Lately, innovative methodologies, formulated on deep learning
algorithms or octree algorithms have been effectively utilized for the robust and automated
recognition of bridge components as well as the creation of a shape information model
and the subsequent monitoring of shape deformation [98,99]. At the same time, data
acquired by LiDAR sensors, combined with 4D design models, were used for the successful
and rapid identification of workflow discrepancies during an on-going construction of a
bridge [100].

Moreover, numerous studies have demonstrated that laser-scanning technology is
capable of detection millimetric-scale deformation within monitoring and management
projects of road and rail transportation networks [12,13]. In this framework, mobile laser
scanners have been efficiently used in the extraction of road edges and the detection of
road curbs, contributing to the assessment of the risk safety along roads as well as the
maintenance of the transportation networks [101–103]. In fact, the processing of corre-
sponding data provided useful information on roadways, which are located in a complex
environment, and they are characterized by heterogeneity and lack of a raised curb [104].
In addition, LiDAR data have been correlated with roughness descriptors for the auto-
mated segmentation and classification of asphalt and stone pavements [105]. Other studies
focused on improving the processing quality or the achievable accuracy of the derived
point clouds. Specifically, methodologies both for the alignment of the lanes of highways
as well as the correction of navigation accuracy and point cloud quality, based on the
extraction of feature information, were proposed [106,107]. Regarding railway industry,
TLS data managed to collect significant amount of surface information in a short time,
while monitoring the progress of the renovation of a railway structure [108]. Meanwhile,
methods have been developed for the identification of railway assets (rail tracks, contact
cables, catenary cables, etc.) on point clouds, derived from LiDAR sensors [109]. The
approach showed average recognition accuracy greater than 95%.

Although there are not enough studies due to the great dependence on conventional
monitoring practices, LiDAR sensors have been utilized to monitor the deformation of
multi-type dams (earth-rock, concrete-faced rockfill), allowing the determination of dis-
placements in both horizontal and vertical directions [110–112]. In particular, the exploita-
tion of TLS data is sufficiently accurate for the inventory of a dam under construction
and the deformation analysis on the upstream face, which is independent of the position
uncertainties of the scanner due to the high precision of alignment of the repetitive point
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clouds [113]. Equally few are the studies dealing with the use of laser scanning technology
for the assessment of structural deformation in archaeological sites [114,115]. Specifically,
the processing of TLS data obtained over archaeological monuments allowed the identifica-
tion of displacements and the evaluation of the mechanisms of instability, providing an
immediate warning of possible failures and a useful tool to support preservation activi-
ties [114]. A list of studies associated with the use of LiDAR data for different infrastructure
monitoring purposes is displayed in Table 5.

Table 5. List of studies dealing with the use of LiDAR data for infrastructure applications.

Reference Infrastructure
Type Application

[92,93] bridge 3D reconstruction model

[94,95] bridge building information
modelling/structure health monitoring

[96] bridge automated crack assessment in
concrete bridges

[60] bridge damage detection and analysis

[97] bridge measurements of
vertical displacements

[98] bridge automated bridge component
recognition

[99] bridge detection of shape deformation
[100] bridge monitoring of construction progress
[101] road extraction of road edges

[102,103] road road curb detection
[104] road extract road information
[105] road maintenance of road pavements

[106,107] road road monitoring
[108] railway monitoring of renovation progress
[109] railway recognition of railroad assets

[110–113] dam deformation monitoring
[114,115] archaeological sites structural deformation monitoring

2.4. UAV

The demand for health assessment and the monitoring of infrastructure—consisting
of bridges, road and railway networks, dams, etc.—is constantly growing over time. The
conventional monitoring techniques have serious disadvantages such as such as inade-
quate evaluation, poor accessibility and high cost. Novel remote-sensing methodologies
overcome these limitations and allow the extraction of robust and operational information
on infrastructure management. Thus, several studies have adopted UAVs for multiple
infrastructure monitoring purposes [14–18]. Some indicative studies dealing with the use
of UAVs for infrastructure-monitoring applications are listed in Table 6.

In more detail, the first attempts focused on the creation of three-dimensional recon-
struction models of bridges through the processing of the obtained UAV imagery using
structure from motion (SfM) algorithm [93,116]. In other studies, UAV data were used
either in combination with measurements obtained by other remote-sensing sensors or in
conjunction with the 3D digital image correlation methods in order to monitor and assess
the structural health of bridges [48,117]. In fact, the methodology proposed by [48] is quite
similar to that of the “PROION” project. However, the main difference between them is
that the current work (i.e., “PROION”) utilizes diverse remote-sensing data (UAV, TLS,
SAR, GNSS) for the monitoring of different types of infrastructure, while the previous one
is more orientated to the assessment of the structural behavior of bridges. Added to this,
there are some dissimilarities regarding the in situ instrumentation.
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Table 6. List of studies dealing with the use of UAVs for infrastructure applications.

Reference Infrastructure
Type Application UAV Type

[116] bridge 3D reconstruction

Hexacopter
(according to DJI S800, SZ
DJI Technology Co., Ltd,

Shenzhen, China)
[93] bridge 3D reconstruction Intel® Falcon 8+

[117] bridge structural health
monitoring PSI InstantEye Gen4

[48] bridge structural monitoring DJI Inspire 1

[118] bridge identification of
deteriorated areas Flytop FlyNovex

[119] bridge damage
quantification DJI Phantom

[120] bridge crack assessment DJI UAV of S1000+/M600,
DJI Inspire 2

[121] bridge crack detection multi-rotary UAV

[122] bridge
detection and

quantification of
cracks

DJI Phantom 4 Advanced

[123] road road surface analysis Geoscan 401
[124] road road assessment single-rotor UAV

[125] road road degradation
assessment DJI Mavic 2 Pro

[126] road road monitoring DJI Mavic 2 Pro

[127] road road crack
identification -

[128] road deformation
monitoring Sensefly eBee Plus

[129] railway assessment of railway
conditions -

[130] railway railway hazard
detection ING’s Responder

[131] buildings structural damage
assessment Aibot X6 V.1

[132] buildings crack damage
detection Hexacopter UAV

[133] buildings structural health
monitoring

Pixhawk UAV, Parrot Bebop
2

[134] buildings crack detection DJI-M200 quadcopter

Furthermore, UAV imagery along with object-based image analysis (OBIA) have been
effectively utilized for the identification and quantification (width, length, extension) of
deteriorated areas in concrete bridges, contributing to the monitoring of deterioration’s evo-
lution and the appropriate execution of maintenance measures [118]. Meanwhile, numerous
different UAVs, along with a variety of soft computing algorithms, have been proposed for
the efficient crack detection and damage quantification and assessment [119–122].

Moreover, UAVs are able to generate detailed 3D reconstruction models of road surface,
to determine successful the road conditions as well as to assess immediately the road
degradation [123–125]. Innovative soft computing algorithms and soft computing have
been applied to UAV imagery to effectively predict road cracks and understand the current
damage status of transportation networks [126,127]. Additionally, UAV photogrammetry
has proven to be sufficient to monitor surface changes and operation progress during the
construction of expressways [128]. Relevant studies have been carried out for the evaluation
of railway conditions and the monitoring of rail tracks, within the context of infrastructure
hazard mitigation [129,130].
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Equally important is the contribution of UAV sensors to the mapping and evaluation
of structural damage of buildings. Therefore, high-resolution oblique UAV images have
been utilized along with the OBIA technique for the identification and assessment of
damage to building facades and roofs [131]. Remarkable progress has been made in the last
decade in UAV technology, soft computing and image processing, leading to robust and
sophisticated infrastructure monitoring solutions. Deep learning algorithms have proven to
be particularly capable of detecting cracks and assessing the structural health of buildings
in a rapid and high-precision manner within UAV imagery [132–134].

3. Contribution of Soft Computing in Infrastructure Monitoring

Condition assessment of civil engineering structures for their safety and remaining
lifetime has been investigated in many studies for recent decades. Mostly, they consisted
of harnessing of non-structured information and knowledge and know how capitaliza-
tion in integrated engineering structures. This is achieved by measuring the “dynamic
response” by attaching acceleration, displacement sensors and other smart equipment.
These “data-information” are further processed to evaluate the presence of damage in these
civil structures [135,136]. Ensuring life safety and the need to reduce inspection costs have
emerged as the top priorities for practicing engineers and researchers the last few decades.
Therefore, the significance of cost-effective SHM to ensure long-term structural integrity
and safety levels has been highlighted on many platforms [135,136].

The rapid increase of data science has offered many effective techniques in handling
the huge amount of data available, by detecting and extracting patterns, with the aim
of grasping the structural condition and characteristics of the long-term deterioration of
the target structure after natural disasters [12]. In addition, in these situations, issue of
warning information and make decisions regarding inspection, repair and strengthening
the damage of civil structures are critical. The data analysis methods based on the current
literature are divided into two major categories the quantitative and semi-quantitative
ones [137]. The former group includes methods based on the statistical analysis of data.
These methods offer the ability to manipulate large sets of data to cluster, classify and
overall extract useful results using machine learning, deep learning and all the methods
which fall into the scope of artificial intelligence. The latter one includes methods based on
fuzzy logic and experts’ knowledge who offer the ability to model less case-specific data
and overcome the uncertainty that comes up due to the lack of data [137].

3.1. Statistical Analysis and Machine Learning

Machine learning is a field of understanding and creating ways to leverage data to
make predictions or decisions. The algorithms created using machine learning have a
wide variety of applications in many fields from medicine to the energy field, to email
filtering, speech recognition, soft computing, etc. The field of geology is one of these
fields that has benefited significantly from the application of machine-learning techniques.
Soilan et al., 2020 [12], have studied the application of such techniques in road and railway
infrastructure monitoring. Data collected from LiDAR were analyzed using support vector
machines (SVMs), principal component analysis (PCA) and random forests (RFs), which
were some of the methods used to perform off-road-surface monitoring by detecting traffic
signs, pole-like objects and roadside trees to classify road markings, driving lanes, cracks
and manholes. In the same paper, the random sample consensus (RANSAC) algorithm
is also presented as a commonly used methodology for railway monitoring, power line
detection for energy supply to trains, etc. The RANSAC algorithm has been widely used in
detecting cracks in concrete surfaces [122] and bridge inspection [112]. The data collected
for road monitoring have been the subject of application of many more techniques including
SVMs, RFs, boosted regression trees, and the Bayesian optimization algorithm [86,126].
Structural-damage sensing is a field where SVMs and RFs have been used to identify
damage regions and have presented a rather high success rate [17]. Machine learning
along with statistical analysis, namely through the application of reduced error pruning
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trees (REPT,) logistic regression, support vector regression, likelihood frequency ratio, and
multivariate statistical approach constituted a very rich core of methods that contributed to
the study, analysis, detection and assessment of landslide susceptibility in various parts of
the world [137–141].

3.2. Deep Learning and Neural Networks

In cases where we needed to recognize the underlying relationships in a set of data,
artificial neural networks (ANNs) emerged to facilitate this endeavor. The basic element of
an ANN is the neural cell; this concept has remained the same since it was first proposed in
1943 by McCulloch and Pitts [142]. A simplified presentation of a basic neural network is
presented in Figure 4. The neural cell consists of three input and one output element. The
input elements multiplied by the weights are summed. A bias is added for modification and
an activation function is used to ensure the non-linear nature of the process and produce
the final output.
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Through the years, ANNs have been widely used by the scientific community and
have experienced many changes and adjustments, especially on the part of using learning
techniques to adjust their weights to produce more accurate results.

Displacement prediction for suspension highway bridges and landslide susceptibility
mapping are two fields that have benefited from the use of ANNs [47,138]. In many cases,
more computational complexity is required to extract the desired results. For such cases,
deep-learning architectures have emerged; they offer the use of multiple layers in the
network, which permits practical application and optimized implementation. Deep neural
networks (DNNs), deep reinforcement learning, recurrent neural networks (RNN) and
convolutional neural networks (CNN) are some of the forms of deep learning that have
been applied to many fields. Ye et al., 2019 [19], have conducted a very informed review in
the way various methods of deep learning that have been used for the structural health
monitoring of civil infrastructure. Bridges, tunnels, roadways, railways, concrete and
steel buildings are some of the infrastructure under investigation where deep learning
was applied, mainly CNNs. CNNs are a method that has proven very effective on image
recognition, so it is commonly preferred in applications were the analysis of images is
required. UAV-assisted rail track inspection [130], building inspection using drones [134],
and detection and quantification of cracks on concrete surfaces from UAV videos [122], are
only some of these applications.

Despite the very promising results in all the applications and in many others where
they have been used, highway crack segmentation [127], landslide susceptibility [137],
structural health monitoring [133], and deep learning approaches face some challenges
in a theoretical as well as a technical point of view. Their ability to handle large sets of
data is the basis of many of their challenges as the quality and quantity of the available
data play a very important role in the training process, which in many cases requires a lot
of time and can sometimes lead to overfitting [19]. With the aim of reducing the training
time, Azimi et al., 2020 [18] and Gopalakrishnan et al. 2018 [132] have used the method of
transfer learning. By using a pre-trained network from a similar application, a fine-tuning
can be performed to the existing network with a lower computational cost and fewer
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data samples. Another issue which scholars and engineers try to address is the ability to
interpret the results and generalize upon them. [19]. The following methods try to offer an
alternative approach to help overcome this problem.

3.3. Fuzzy Logic and Fuzzy Inference Systems

Fuzzy logic is a theory based on the premise that one value can be part of more than
one set, when each set has a different membership degree. This theory expressed for the
first time from Zadeh in 1965, has since gained a lot of ground in the scientific world and has
been applied to many fields, from energy, to medicine, economics etc. Fuzzy logic provides
a versatile way to describe a system by using the knowledge of experts and operate under
uncertain and vague information without requiring precise figures of the system parameters.
What fuzzy logic essentially does is model the knowledge and experience of an experienced
user through a set of simple linguistic rules, thus forming a system based on knowledge,
which leads to simpler models which are more manageable and closer to human reason. A
fuzzy logic-based system has been developed to map landslide susceptibility [143]. The
method was considered a useful tool in landslide susceptibility assessment as it has a
considerable capacity to model complex and nonlinear systems. Moreover, when combine
with other methodologies fuzzy logic can provide useful insights and promising results.
In the field of structural health monitoring, specifically for the prediction of displacement
of suspension highway bridges, an adaptive neuro fuzzy inference system was integrated
and characterized as the optimum model and technique for GNSS observations in these
cases, especially when compared to ANNs [47].

In other applications, fuzzy logic is combined with expert-based systems, which are
also designed to emulate the decision-making ability of a human expert. As in fuzzy logic,
expert-based systems have, in many cases, the experts themselves involved in the design
process of the system helping to define the inputs and the interconnections between them.
Such a system is the analytical hierarchy process (AHP), which has in many cases been used
in landslide susceptibility mapping with very promising results [137,144–146]. The Fuzzy–
AHP is a method that combines the two methodologies, and when applied in the same field,
landslide susceptibility mapping, provides more comprehensive, flexible, and substantial
results when the decision criteria as in this case cannot easily be quantified [147–149].

4. Research Summary and Future Insights
4.1. Overview

In recent decades, civil engineering structures (bridges, government buildings, school
and university buildings, hospitals, highways, dams, nuclear reactors, prisons, stadiums,
etc.) have been particularly prone to a significant loss of “functionality” and safe operations
due to structural deficiencies that are primarily caused by material deterioration and
loadings from earthquakes, strong winds, floods, landslides, debris flows, or ambient
vibrations. Indeed, in the United States, on a grade scale of A (excellent condition) to F
(unacceptable condition), the overall score was as low as D+ for infrastructure, and C+
for bridges with an estimated $123Bn for retrofitting according to the American Society
of Civil Engineers (ASCE) [150]. The report states that 7.5% of bridges rated structurally
deficient and mostly below standard, with many elements approaching their end of service
life. Furthermore, more than 30% of the approximately 617,000 highway bridges in the US
need immediate attention due to deteriorating conditions according to the USA Federal
Highway Administration (FHWA), (FHWA 2019) [151].

In this framework, effective infrastructure-monitoring solutions, based on remote-
sensing data, have been developed. In fact, historical trends demonstrate that the number
of publications using remote-sensing data for the monitoring of different types of infras-
tructure is constantly increasing (Figure 1), confirming the growing interest of the scientific
community for time- and cost- efficient approaches in the specific domain. The current
review collected and analyzed the recent publications (2012–2022), in which researchers
utilized data obtained by GNSS, SAR, LiDAR and UAV sensors aiming at the monitoring
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and maintenance of multi-type civil engineering structures, including roads and railways,
dams, bridges, archaeological sites and buildings.

The statistical analysis of the reviewing publications was performed using a descriptive
statistical analysis method. Descriptive statistics constitute a simple form of statistical
analysis, in which numbers describe the properties of a data group. The method contributes
to simplifying and summarizing large data sets that can be easily interpreted. In particular,
the reviewing data were processed according to frequency and percentage statistics. It was
revealed that the widely used remote-sensing sensors applied in infrastructure monitoring
concepts are SARs and LiDARs (Figure 5a), while regarding the type of infrastructure, the
research is mainly focused on transportation networks (road and railway) and bridges
Figure 5b. The sunburst charts of Figure 5 depict the percentage distribution of remote-
sensing sensors (Figure 5a) and type of infrastructure application (Figure 5b) within the
total number of reviewing publications. In a further analysis, the proportion of publications
focusing on a specific civil engineering structure in accordance with a given remote-sensing
sensor, was estimated (Figure 6). As it can be observed, the majority of GNSS-based studies
is related to the monitoring of dams and bridges (Figure 6a), while SAR sensors cover a
larger field of infrastructure types, consisting of transportation networks, dams and bridges
(Figure 6b). LiDARs present an equally wide range of structure types such as dams, bridges
and transportation networks, but they have also been sufficiently utilized in the monitoring
of archaeological sites, mainly due to their remarkable accuracy. (Figure 6c). UAVs have
been effectively used in the monitoring and identification of deficiencies in roads and
railways, bridges and buildings (Figure 6d).

Meanwhile, the significant technological advantages, as well as the increasing de-
mand of handling the enormous amount of remote-sensing data, brought to the fore more
sophisticated processing approaches for the monitoring and assessment of the structural
health, which are based on soft computing methods. These methods are divided into two
major categories: (a) the quantitative ones, including machine and deep learning, and
artificial neural networks, which mainly focus on data manipulation by applying advanced
statistical analysis for analysis, classification, etc., [18,19] and (b) the semi-quantitative
ones who operate based on expert intelligence and fuzzy logic and apply well in cases
with high uncertainty and when it is necessary to combine different sources of data [137].
Publications of both categories, related to infrastructure purposes, were reviewed and
analyzed. Figure 7 displays the widely used soft computing methods within the reviewed
studies in accordance with the year of publication. In general, it was proven that deep
learning/neural networks as well as statistical analysis/machine learning constitute the
most popular soft computing approaches for infrastructure projects (Figures 8 and 9).
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infrastructure application. (a) GNSS-based studies, (b) SAR-based studies, (c) LiDAR-based studies
and (d) UAV-based studies.
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In more detail, Figures 7–9 attempt to contribute to the understanding of how the
four different approaches been used in remote-sensing approaches and soft computing for
infrastructure monitoring. The four different approaches for the papers that have been re-
viewed are: (1) expert-Based approach, (2) fuzzy-based, (3) deep learning/neural networks
and (4) statistical analysis/machine learning. Figure 7 displays the evolution of the widely
used soft computing methods throughout the years. It is interesting that throughout the
years while statistical analysis and machine learning constitute a constant in the preferred
methodologies, in recent years deep learning, fuzzy logic and expert-based approaches
have started to gain a considerable amount of ground in the field of infrastructure moni-
toring. Figure 8 displays the percentage for each of the four soft-computing methods in
relation to the total reviewed papers, providing a better overview on the most-used method-
ologies. Figure 9 displays the percentage for each of the four soft computing methos in
relation to the infrastructure application. Interesting and useful conclusions can be drawn
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from Figures 7–9. At least one or combination of the four approaches have been used in
each year (Figure 7). Deep learning/neural networks as well as statistical analysis/machine
learning approaches constitute the most popular soft computing methods (red and blue
colors) compared to the other two methods (Figure 8). Figure 9 also provides us with
some useful information for different infrastructure applications and how our research can
contribute by applying soft computer methodologies in infrastructure for which, to our
knowledge, few applications exist.
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4.2. Selected Case Studies

According to statistical analysis of the reviewing publications, UAV and TLS sensors
are widely used for bridge structural monitoring [48,94]. Despite the fact that TLS sensors
provide structural models of ultra-high accuracy [94], the survey is time-consuming, es-
pecially in large bridges, and the purchase of the equipment may not be affordable. On
the contrary, UAVs constitute a more cost-efficient solution, extracting satisfactory results.
For instance, UAV data were combined with sensors measuring the physical quantities
(environmental parameters, structural responses) as well as neural network algorithms to
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monitor the structural behavior of Petrace bridge in Italy and establish an early warning
system [48].

GNSS surveys and InSAR approaches are among the most common methods for dam
monitoring. In this regard, a complementary methodology, consisting of GNSS data and a
quasi-persistent scattered interferometric technique, was applied to monitor the triggering
factors and the resulting displacements of Castello dam in Sicily [56]. GNSS data were
collected on the crest of the dam using a permanent station. The results of both approaches
were comparable. It is worth mentioning that it is important to have a large archive of
observations and to ensure that GNSS and InSAR measurements are consistent.

SAR-based methodologies are a commonplace for the structural monitoring of road/
railway networks, due to the large extent of these types of infrastructure. In fact, some
researchers developed a quite promising methodology for the monitoring of Betuwe Freight
Corridor in Netherlands, which is based on improving the geolocation of persistent scatter-
ers using laser scanning data [82].

4.3. Future Insights

As already mentioned, the current study was carried out to review and identify the
most effective and innovative remote sensing and soft computing techniques for infras-
tructure monitoring aiming at utilizing the knowledge gained within the objectives of
“PROION” project. Therefore, this literature review constitutes our first step in proposing a
synergistic approach, consisting of remote-sensing techniques and soft-computing methods
to produce an efficient platform of collecting, studying, and analyzing data to achieve the
improvement of human wellbeing by offering safer and more secure infrastructure. Such a
newly developed platform will provide the global behavioral pattern of the civil structure
under investigation through the analysis of local damage indications. Moreover, fuzzy
logic and dynamic fuzzy cognitive maps would improve the understanding of the dynamic
behavior of the civil structure after a natural disaster [152]. In this framework, future
research should focus on combining both the quantitative as well as the semi-qualitative
techniques to produce the most efficient way of studying and analyzing data, while fuzzy
logic and fuzzy cognitive maps should be further explored.

Meanwhile, time series prediction is always a very challenging subject, especially
when combined with remote-sensing data where the amount of data is particularly large.
InSAR displacements have a lot of variations, making it difficult to produce a methodology
to adjust to them and accurately predict future values. TLS and UAV data create extremely
large datasets that require many computing resources to be able to handle all of them and
produce useful insights. As soft computing methodologies progress in the field of remote
sensing, we believe that new, more agile solutions will emerge. Image recognition and
image comparison will play a very important role in infrastructure monitoring. However,
purely computational approaches, no matter how accurate they may be, cannot be entirely
successful unless they find a way to incorporate human knowledge and expertise. For this
reason, we support that hybrid methods that combine human/expert knowledge with the
computational power of traditional computing methodologies can offer versatile solutions
in the problem of infrastructure monitoring.

5. Conclusions

Many important examples of civil infrastructure, such as hospitals, university and
school buildings, bridges, nuclear reactors, government buildings and dams, are affected
by climate change. Thus, the ability to immediately assess the structural integrity of
this infrastructure after a natural disaster is of paramount importance. In this research
paper, an extensive literature review is provided for all types of infrastructure that are
subject to structural deficiencies caused by material deterioration due to the passing of
time, earthquakes, wind, vehicles, or ambient vibrations. The issue of warning information
and make decisions regarding inspection, repair and strengthening is a crucial part of the
procedure. Nowadays, infrastructure monitoring and assessment takes place with novel
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approaches based on remote-sensing data and soft computing methods. In this context,
almost 150 publications were review and discussed. Remote-sensing approaches included
data acquired by GNSS, SAR, LiDAR and UAV sensors, while the methods of statistical
analysis and machine learning, deep learning and neural networks, fuzzy logic and fuzzy
inference systems were briefly analyzed.
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